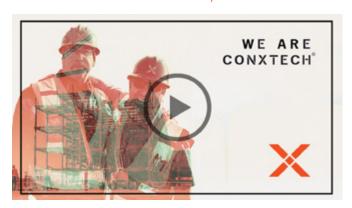
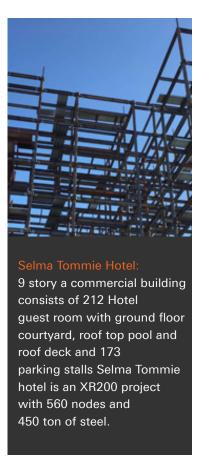


CONXTECH[®] conxtech.com

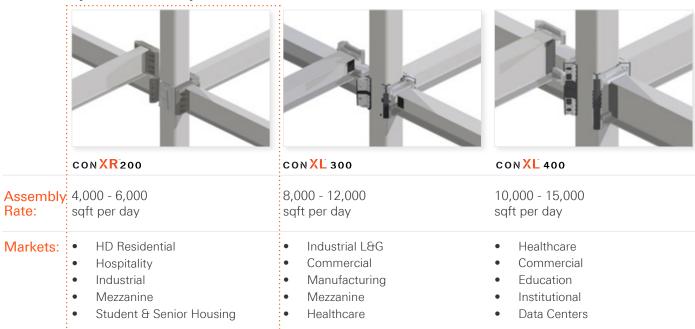



The Structural Steel Building System That is Simply Faster, Simply Safer & Simply Proven.

ConXtech® is a building technology company that offers an innovative, mass customizable, structural steel framing system. Often referred to as a "Full-Scale Erector Set," ConXtech enables rapid design and delivery of robust, yet affordable steel structures that meet even the most demanding seismic design and building code requirements. ConXtech provides both fabrication and erection services and has access to a global network of ConXtech Fabricators & Erectors.

For nearly two decades, ConXtech has teamed with high-profile clients to design and deliver innovative structures that improve safety and accelerate schedules while reducing Total Installed Costs (TIC).

We Are ConXtech: This is Our Story - Video Link



System for Hospitality and High Density Residential

ConXtech offers a variety of approaches for the Hospitality and High Density Residential sector. The first is our SMF (Special Moment Frame) option. The second is our hybrid approach that combines our FMC (Flexible Moment Connection) with standard bracing. Depending on the location, building demands, and specifications, ConXtech will offer the most efficient, highest-performing, and cost-effective structure to meet our clients' needs. In both instances, speed to market is our superpower.

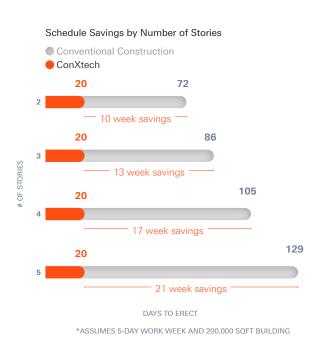
ConXtech Systems & Primary Markets

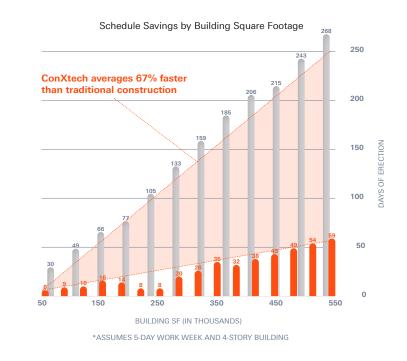
Turnkey Approach

Design

- In-House professional engineering capacity offers robust design-assist support from concept though plan check
- Standardized connection design allows engineers to focus on other critical path items

Fabricate

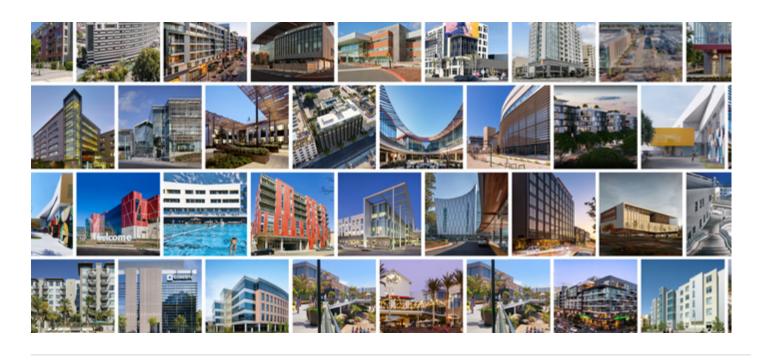

- · Specialized fixturing = fewer defects
- Reduced inspection costs
- High-Accuracy fabrication yields precision fit in the field
- Flexible fabrication capabilities across multiple locations


Erect

- 2x 5x faster assembly than other construction methods
- 50% reduction of field labor for "assembly" of structure
- · Reduced risk for client
- · Rapid turn-over of critical path

ConXtech vs. Conventional

- Magnitude of savings is proportionate to magnitude of project
- On average, Conxtech is 67% faster



The economic impact of these schedule savings is substantial. On a recently constructed data center project, one client analyzed the economic benefit of using ConXtech on his project.

Time is Money:

Unlimited Design and Engineering Possibilities

Why ConXtech is Faster

Streamline method of erection Built-up is Built-in

Traditional

Multiple people per joint in precarious positions

Conxtech

Work out of man-basket, only one person needed at joint to easily lower and lock into place (not even one man...only one hand)

Billboard/X-tree Installation speeds assembly time

Traditional

Tiered Erection – mired in redundancy

Conxtech

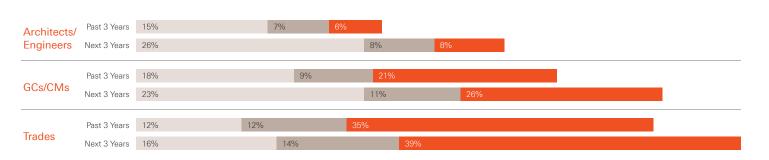
Billboarding – instant stability +fewer "at risk" hours onsite

No lost time to inspections, testing and reworking

Traditional

Field weld testing/inspection leading to re-work

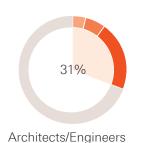
Conxtect


ConX simplifies inspection

ConXtech: A Unique Accelerator in the Structural Engineer's Toolkit

Percent of Projects with Prefabricated Single Trade Assemblies

(Past 3 Years and Next 3 Years by Type of Company)


Prefabricated and modular methods of construction are not new, but their use is surging across the global construction sector. Global markets have experienced a significant uptick in demand for everything from pre-manufactured assemblies to volumetric modular apartments built offsite. Real estate developers are driving much of the sector's growth, hoping to achieve faster construction schedules that produce earlier revenue and lower overall carrying costs. In their 2019 report, Modular construction: From projects to products, McKinsey researchers brought wide attention to the positive impacts of offsite construction manufacturing finding that certain forms have a consistent track record of accelerating project timelines by 20% to 50%.

Offsite constructed systems range from prefabricated roof trusses to fully-finished, factory-built housing units, and the use of such systems is on the rise. In a report published by Dodge Data & Analytics, Prefabrication and Modular Construction 2020, 31% of engineers and architects, and 58% of general contractors reported that using some form of prefabrication meaningfully improved overall project timelines. Almost 70% of architects and general contractors in the Dodge study anticipated specifying single-trade prefabrication over the next 3 years.

In addition to project schedule acceleration, moving complex building assemblies into a controlled factory environment promotes improved safety, sustainability, and quality metrics.

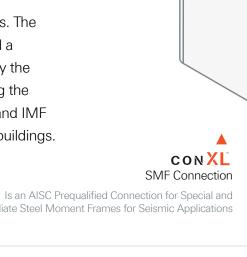
Impact of Prefabrication on Project Schedule Performance

(Percentages Reporting Each of Three Levels of Improvement)

>75% of Projects 50-75% of Projects

<50% of Projects

AISC Pre-Qualified



Technical Summary

ConXtech's ConXL connection has been through a rigorous qualification review process conducted by the AISC 358 - Connection Pre-qualification Review Panel (CPRP). ConXL was approved through this process and has been incorporated as Chapter 10 in the 2010 AISC 358 code book, Pre-qualified Connections for Special and Intermediate Steel Moment Frames for Seismic Applications.

ConXtech completed six successful tests of its moment connection for the CPRP under the unprecedented bi-axial test protocol which subjected the ConXL connection to the typical Seismic Provisions cyclic loading while simultaneously subjecting the connection to a constant orthogonal load equal to 100% of the probable maximum moment (Mpr) of the primary beams. No other steel framing connection has been subjected to this type of loading as the ConXtech connections are the only standard bi-axial steel moment connections in the market today.

AISC's CPRP reviews connection test data and pre-qualifies connections in accordance with the AISC Seismic Provisions. The connections that gain approval of the AISC CPRP reviews are considered a pre-qualified connection standard. A moment connection pre-qualified by the AISC CPRP provides the most recognized and direct method of satisfying the Seismic Provision's conformance demonstration requirements for SMF and IMF connections and simplifies the project approval process for this class of buildings.

Intermediate Steel Moment Frames for Seismic Applications

General Contractor Partnerships

Great partnerships always make a difference.

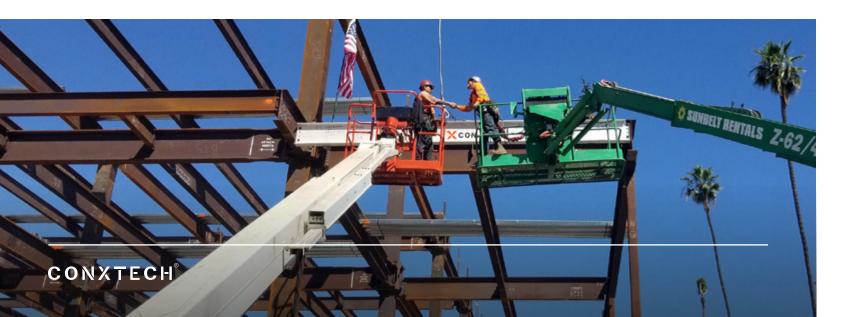
The relationship between general contractors and subcontractors is one of the most important factors in the success of any construction project. When these two parties work together effectively, they can deliver high-quality projects on time and within budget. When these two parties communicate effectively and respect each other's expertise, it creates a more collaborative and supportive environment. This can lead to better decision-making, problem-solving, and overall project outcomes.

Conxtech has been working with some of the most influential national GC's for over 20 years. These relationships are built on trust, respect, and a shared commitment to quality and customer satisfaction.

With extensive experience working on numerous high-profile projects, Conxtech and our GC partners are able to collaborate more effectively, developing new and innovative ways to build more efficiently and sustainably.

These established relationships are essential to the success on construction projects. We build our relationships by being clear about expectations, communicating regularly, being fair and honest, and respecting each other's expertise and experience. We wouldn't be where we are today without the trust and confidence we've built with all of these highly regarded general contracting firms.

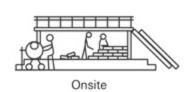
A few Selected Conxtech GC Partnerships



Turner

Recoverable and Recyclable

Steel's supply chain is truly circular. Instead of going to the landfill or an incinerator, decommissioned bridges and buildings go right back to the mill to become new steel again and again.


- Did you know that steel is one of the most recycled building materials in the construction industry?
- Any steel product, including structural steel that reach the end of its lifecycle or are no longer needed, is 100% recyclable.
- Any steel decks, steel joists, steel beams, or steel doors can be recycled and used again.
- And not only can it be recycled, but it can be recycled into a completely different product.
- Steel is often chosen as a building material for its strength and durability, but more and more people choose it now because of its sustainability.
- More than 60 million tons of steel are recycled every year in the U.S. alone.
- Globally that number increases by almost ten times. It's the most recycled material.

The American Institute of Steel Construction estimates that 98% of structural steel from demolished buildings is recovered and recycled into new steel products. As such, domestically produced structural steel, which comes from electric arc furnace (EAF) mills, boasts a recycled content of 93%, according to a UL-verified Environmental Product Declaration (EPD) authored by the AISC in 2016. "A car door, a steel beam, a shipping container, or an old refrigerator could be sold as scrap and turned into a steel wide-flange beam that goes into a new skyscraper" according to the declaration.

Factory & Jobsite Integration

Benefits

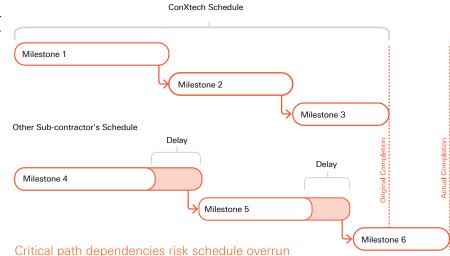
Increased Labor Productivity
Less Waste
Highly Skilled Workforce
Improved Jobsite Efficiency
Quality Control

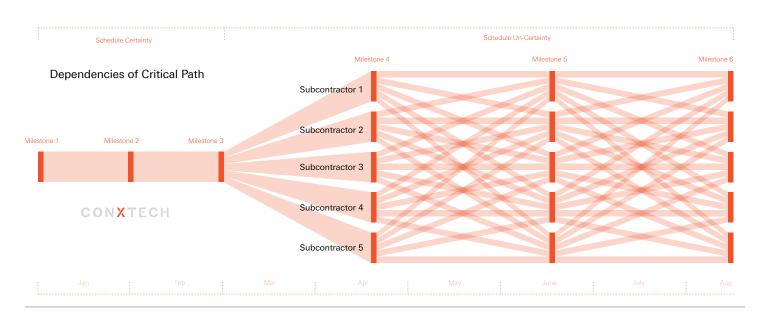
Labor Productivity Increases by 30% on Offsite Projects Source: McGraw Hill

End-to-end LEAN process, from manufacturing through erection.

Shifting labor from the jobsite to the factory.

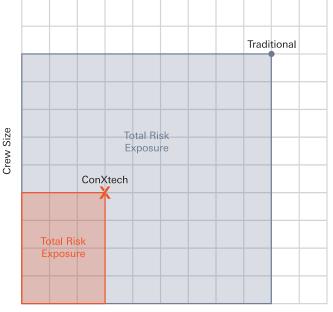
Advanced Technology



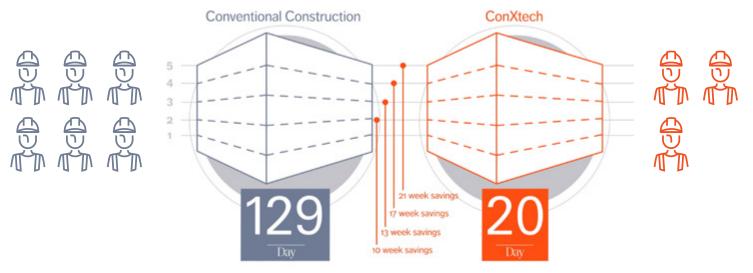

Extending factory precision to the jobsite.

Critical Path Impact

- ConXtech impacts critical path directly
- We are the only subcontractor that can reliably claim schedule savings
- Following the completion of ConXtech's scope, multiple subcontractors begin working simultaneously effecting each others' critical path



Safer Steel Erection Sequencing

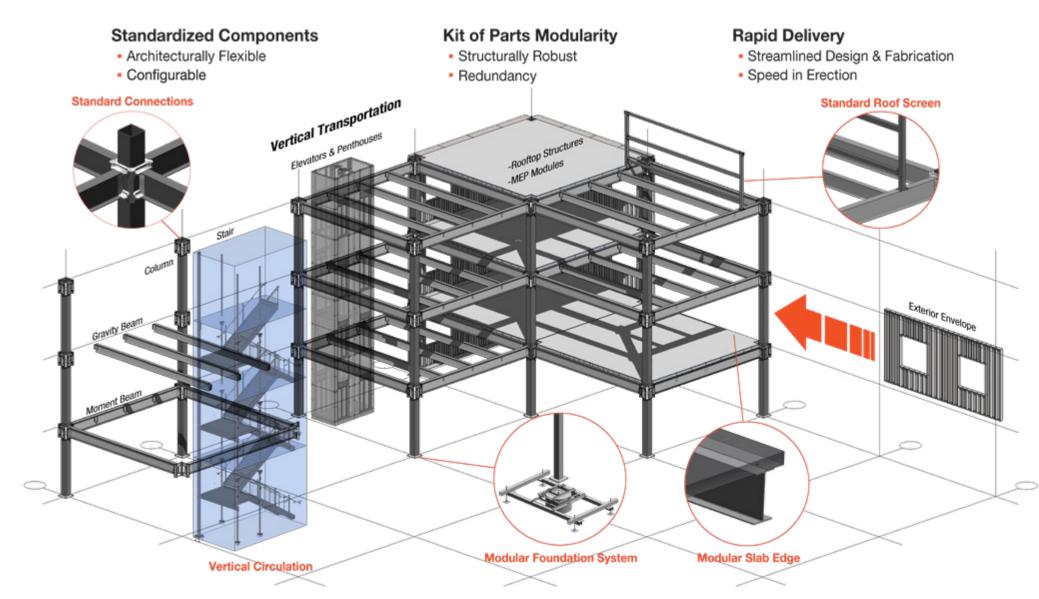

- Crew works out of baskets, not walking the steel
- Beams drop into place less than 6 secs
- Smaller crew size +
 less labor hours = Less
 exposure to risk
- Less craft labor on the jobsite for a shorter duration leads to better safety outcomes

Total Labor Hours

About 1/2 the crew size and 1/2 the labor hours

Industry leading interstate EMR

ConXtech's riggers and connectors work from the safety of high reach mobile work platforms operating in delineated fall hazard exclusion areas, enabling them to quickly and safely move from work point to work point.


Structural Steel Systems Made Fast

System of Systems

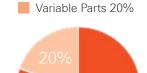
ConXtech's mass-customizable structural steel Flexible Modular Building System is made up of standard connections and used to organize and support other modular systems or assemblies. This not only applies in the built environment, but also in the digital environment during design, using standardized modular connections and interfaces – creating a "System of Systems" which enables simple integration of other modular parts.

Scope provided:

- ConX Beam Assemblies
- ConX Column Assemblies
- ConX Collar Assemblies
- ConX Standard Egress Stairs
- ConX Elevator Support Steel
- ConX Edge Closure
- MEP Integration
- Exterior Skin System Integration
- Decking

Repeatable, rapidly deployed, building erection of Hospitality and High Density Residential Projects anywhere in the Continental US.

Kit of Parts


Due to the repeatability of the system, our standard kit of parts offer consistency throughout yet allow for site specific customization of the lateral force resisting system as required.

Kit of Parts

80%-90% =constant 10%-20% =variable

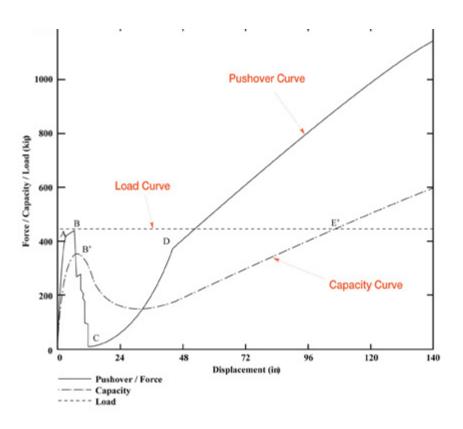
Prototype Variable Part Lis

- Seismic Lateral Bracing/System
- Non-Seismic Lateral Bracing

80%

Constant Parts 80%

Prototype Constant Part List:


- Gravity framing & connections
- Moment Connections
- Decking
- Base Plates
- Anchor Rods
- Clips, angles and other small parts
- Galvanized roof dunnage
- Galvanized roof screens
- Egress Stairs
- Elevator support steel

CONXTECH®

"The ConXtech systems are ideal for building applications that must be designed to resist progressive collapse resulting from vehicle impact, incendiary or explosive attack."

Source: Ronald O. Hamburger, S.E. Senior Principal, Simpson Gumpertz & Heger, Inc.

In addition to the obvious suitability for resistance to progressive collapse through the multiple alternate paths provided by ConXtech framing, the connections are also ideal for the two other UFC design approaches.

Tie force provisions are accommodated by the moment beams without the addition of reinforcing in the slab as the connection will support centenary tie forces after the collapse of the plastic hinge through tension acting through the remaining flange and its collar assembly.

A typical pushover curve for a ductile moment connection shows that immediately after the inelastic rotational capacity of the beam has been exceeded, the connection begins to pick up load due to catenary, or cable action.

High Density Residential & Hospitality Experience

High Density Residential & Hospitality Experience

ConXtech's XR200 system is an ideal structural solution for High Densitey Residential and Hospitality applications offering accelerated installation schedules as well as simplified layout and future programmability.

Schedule

- 2x-5x faster than conventional steel and concrete
- Accelerated schedule from concept through construction
- Accelerated approvals

Safety

- 50% reduction in field labor- fewer "at-risk"
- "Lower and locking" connection provide instant stability and alignment prior to bolt-up
- Erection done from aerial baskets
- Precision fabrication translates to repeatable standard work and perfect fit in field

Cost

- Up to 10% lower structural system cost vs conventional steel (incl savings in GC/GRs) depending on region
- Reduced carrying costs and interest reserves
- for development financing
- Easy integration of other trades due to standard, modular componentry

Asset Value

- Increased schedule leads to faster occupancy
- Safer, higher performance facilities
- Lower overall risk and greater predictability due to systems approach
- Reduced Noise, on-site waste, and disruption to neighboring facilities
- Flexible structural system is easy to customize

Use Cases

- Projects that are schedule driven: "WE WILL GIVE YOU A MONTH!"
- Projects that require schedule certainty: "CONXTECH HAS NOT MISSED A SCHEDULE
- Projects that require pricing certainty: "AS A MODULAR SYSTEM WE CAN GIVE YOU A DEFINITIVE PRICE (+/- escalation) FOR YOUR CLIENT!"

Key CONXR 200 Product Details

Height Range:

4 - 8 stories

8" square

12"

4,000-6,000ft²/Day

Field Assembly Rate:

HSS Column Size:

Variable Beam Depth*:

Variable Beam Spans**:

18' - 45'+

For more information about this product or any product within the ConX Structural Steel Platform, please contact us at info@conxtech.com or visit conxtech.com

The Crossing

Location	San Bruno, CA
Description	HD Residential
Size	517,000 sqft
Time	105 Days to Erect Steel
Owner	SNK Development
Contractor	SNK Construction
Engineer	FBA Engineers
Architect	HDO Architects
System	ConXR 200

Thomas Berkeley Square

Location	Oakland, CA
Description	HD Residential
Size	116,000 sqft
Time	15 Days to Erect Steel
Owner	The Bedford Group
Contractor	UPA
Engineer	FBA Engineers
Architect	Holt Hinshaw Architects
System	ConXR 200

Eighth & Grand

Location	Los Angeles, CA
Description	HD Residential & Mixed Use
Size	635,000 sqft
Time	125 Days to Erect Steel
Owner	Carmel Partners
Contractor	CP West
Engineer	Englekirk Structural Engineers
Architect	Daryoush Safai
System	ConXR 200

Broadway Grand

Location	Oakland, CA
Description	HD Residential & Mixed Use
Size	184,000 sqft
Time	37 Days to Erect Steel
Owner	Signature Properties
Contractor	Signature Properties
Engineer	Nishkian Menninger
Architect	MBH Architects
System	ConXR 200

235 Berry Street

Location	San Francisco, CA
Description	HD Residential
Size	126,000 sqft
Time	25 Days to Erect Steel
Owner	Signature Properties
Contractor	Devcon Construction
Engineer	Nishkian Menninger
Architect	Leddy Maytum Stacy Architects
System	ConXR 200

550 Moreland

Location	Santa Clara, CA
Description	HD Residential
Size	368,000 sqft
Time	74 Days to Erect Steel
Owner	Prometheus
Contractor	Palisade Builders
Engineer	FBA Engineers
Architect	KTGY
System	ConXR 200

20

8 Orchids

Location	Oakland, CA
Description	HD Residential
Size	200,000 sqft
Time	40 Days to Erect Steel
Owner	Bay Rock
Contractor	JR Roberts
Engineer	FBA Engineers
Architect	HDO Architects
System	ConXR 200

Landmark Plaza

Location	Daily City, CA
Description	HD Residential
Size	113,900 sqft
Time	23 Days to Erect Steel
Owner	Landmark Plaza-Daily City, LLC
Contractor	Landmark
Engineer	FBA Engineers
Architect	DIAP
System	ConXR 200

UC Merced

Location	Merced, CA
Description	Student Housing
Size	110,000 sqft
Time	20 Days to Erect Steel
Owner	University of California
Contractor	ProWest Constructors
Engineer	GFDS San Francisco
Architect	EHDD Architects
System	ConXR 200

Valley Vista Assisted Living

Location	Van Nuys, CA
Description	Assisted Living
Size	80,500sqft
Time	20 days to erect
Owner	7040 Van Nuys Partnership, LLC
Contractor	Landmark View, Inc.
Engineer	Ashley & Vance
Architect	Hochhauser & Blatter
Type	ConXR 200

Icon at Silverleaf (Buildings 1, 2 & 8)

Location	Scottsdale, AZ
Description	Luxury Residential
Size	123,000sqft
Time	18 days to erect
Owner	The New Home Company/DMB
Contractor	PWI Construction, Inc.
Engineer	Wright Engineers
Architect	Robert Hidey Architects
Туре	ConXR 200

Cielo at Little italy

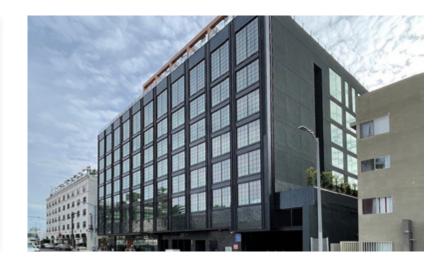
Location	San Diego, CA
Description	Residential/Retail
Size	76,000 sqft
Time	18 Days to Erect Steel
Owner	Bayview SD, LLC
Contractor	R.D. Olson
Engineer	Englekirk
Architect	DFH Architects, LLP
System	ConXR 200

1450 Franklin

Location	San Francisco, CA
Description	Luxury Residential
Size	100,000sqft
Time	24 days to erect
Owner	Village Properties
Contractor	N/A
Engineer	FBA Engineers
Architect	BDE Architecture
Туре	ConXR 200

CSU San Marcos - Block 3 Student Housing

San Marcos, CA
Student Housing
96,000sqft
30 days to erect
CSU San Marcos
Turner Construction
KPFF
Safdie Rabines
ConXR 200


500 Broadway (The Park)

Location	Santa Monica, CA
Description	Residential/Retail
Size	265,000 sqft
Time	63 Days to Erect Steel
Owner	Witkoff
Contractor	Pankow Builders
Engineer	Nabih Youssef Associates
Architect	KoningEizenberg
System	ConXR 200

Selma Tommie Hotel

Location	Los Angeles, CA
Description	Hotel
Size	88,995 sqft
Time	15 Days to Erect Steel
Owner	Relevant Group
Contractor	Suffolk Construction
Engineer	Englekirk Structural Engineers
Architect	Stinberg
Туре	ConXR 200

Godfrey Hollywood

Location	Hollywood, CA
Description	Hotel
Size	73,364 sqft
Time	25 Days to Erect Steel
Owner	Five Chairs Development
Contractor	Davis Reed Construction
Engineer	Englekirk Structural Engineers
Architect	Steinberg Hart Architects
Туре	ConXR 200

Hilton At The Source

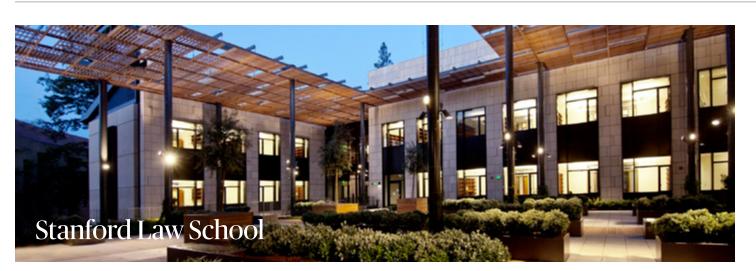
Location	Santa Clara, CA
Description	Hotel
Size	94,000 sqft
Time	15 Days to Erect Steel
Owner	MD Properties
Contractor	Swinerton Builders
Engineer	Englekirk Structural Engineers
Architect	Gene Fong Associates
Туре	ConXR 200

Bicycle Casino Hotel

Bell Gardens, CA
Hotel
72,000 sqft
15 Days to Erect Steel
Bicycle Casino LP
R. D. Olson
Englekirk
Lee & Sakahara
ConXR 200

Courtyard Marriott Monterey Park

Location	Monterey Park, CA
Description	Hotel
Size	210,000sqft
Time	38 days to erect
Owner	Ethan Capital LLC
Contractor	KCS West
Engineer	Saiful Bouquet Structural Engineers
Architect	Gene Fong Associates
Туре	ConXR 200

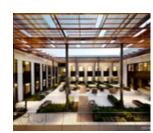

AC Marriott Hotel

Location	San Jose, CA
Description	Hotel
Size	79,469 sqft
Time	18 Days to Erect Steel
Owner	PCA III LLC
Contractor	DLR Group
Engineer	Englekirk Structural Engineers
Architect	DLR Group
Туре	ConXR 200

Additional Project Experience

Fairfield, CA | OSHPD Hospital

This 78,130 ft2 hospital expansion is an OSHPD-licensed critical care facility in Northern California designed using the ConXL System. The scope includes a renovation of 9,000 ft2 of the existing Emergency Department, as well as a new 4,500 ft2 freestanding lobby. Diagnostic facilities, central sterile processing facilities, a kitchen and cafeteria, nursing units and surgical and imaging services are also included in the expansion.



Owner	NorthBay Healthcare
Contractor	Constructiv Construction
Engineer	Thornton Thomasetti
Architect	Ratcliff Architects
Туре	ConXL 400

Stanford, CA | Education

In the footprint once occupied by Kresge Auditorium, the new William H. Neukom academic building provides 65,000 sf of clinic, seminar, meeting and office space. It is efficient, smart, flexible, welcoming and value-engineered to reduce overall environmental impact. The structure has been built to satisfy the equivalent of a LEED® Gold Certification by meeting key sustainability requirements in the areas of site planning, water management, energy use, materials, resources, waste, indoor environmental quality, innovation and design.

Owner	Stanford University
Contractor	Dome Construction
Engineer	Degenkolb Engineers
Architect	Enread Architects
Type	ConXL400

Mountain View, CA | Commercial

1.2 million square feet complex consisting of office space and short-term employee accommodation units on 42 acres in Mountain View at the NASA Ames Research Center. Designed with a sweeping canopy roof, the sprawling tent-like roof encloses several discrete structures which help to regulate the internal climate. The multi-tiered canopy system captures water for reuse and holds solar panels which create roughly four megawatts of power. This project was selected as the "Silicon Valley Business Journal's Green Project Winner".

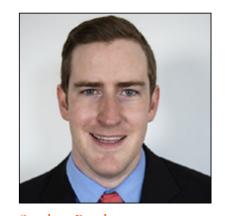
Owner Confidential Silicon Valley Tech Owner

Contractor Whiting-Turner

Engineer Thornton Tomasetti

Architect BIG + Heatherwick Studio

Type ConXL300


ConXtech Leadership

Robert Paulk President

Captain Paulk, a 1984 graduate of the U.S. Naval Academy, retired in 2014 after 30 years of Active and Reserve naval service that culminated with three decorated command and overseas combat tours (2007-2012) in Afghanistan, Iraq, Kuwait, and the United Arab Emirates. In his private career, he has held numerous senior leadership positions in both large national and regional private businesses and non-profit organizations.

Recently, he served as Pogue Construction's Chief Operations Officer (COO), a \$600 million general contractor located in McKinney, TX. During his 6 years as COO he led multiple key reorganization and staffing initiatives, corrected project ontime completion performance, and helped drive record annual revenues and profit in 2018, 2019, and 2020. Concurrently, Pogue Construction received regional and national recognition for construction volume and as a "best place to work."

Stephen Boyd
Vice President, Technology &
Operations

As VP Technology, Stephen is responsible for ConXtech's core products, as well as the hardware, software, processes, and systems needed to successfully execute ConX-based projects. He is a passionate technology leader and innovator driving scalability for ConXtech's products and setting the stage for longterm growth. As one of the engineers responsible for the XL300 industrial system, Stephen has developed a deep knowledge of the ConXtech product portfolio and all of the underlying systems enabling its success. He has led crossfunctional engineers to drive product improvements and scalability that have enabled successful deployment and implementation of ConXtech technology.

With a Bachelor of Science Mechanical Engineering degree from Union College, Stephen's background gives him exposure across engineering disciplines.

Adam Kurtenbach
Vice President of Business
Development

Adam Kurtenbach has been in the modular construction industry for over 20 years. He joins ConXtech from KATERRA, where he was most recently the Director of Business Development for the PNW. In this role, Adam was responsible for oversight of almost \$500 million in project sales. Previous to his stint at Katerra. Adam ran Business Development for Urban Edge Builders (UEB) where he helped establish their Seattle office and was involved in bringing the first high-rise to the University of Washington district in over 30 years; The M. Adam is a firm believer in the power of innovative, modular, sustainable building practices and their ability to change the built environment for the better. A long-time hockey and lacrosse coach and player, Adam believes in the parallels between these sports and the construction industry; namely, grind to succeed, be accountable every day, and team before individual.

Josh DeLehman
Senior Director, Business
Development

Mr. DeLehman joins ConXtech with 15 years of experience in engineering and construction for the energy, mining, and infrastructure industries. His roles have included senior positions in both Supply Chain Management and Business Development, with an emphasis on construction support services and manufacturing. A common thread in Mr. DeLehman's career has been risk mitigation through shifting work from the job site into controlled shop environments where certainty of cost, quality, schedule and safety are more readily achievable. This focus is expected to serve Mr. DeLehman well as he works to grow ConXtech's core business. Mr. DeLehman holds a Bachelor's of Science in Business Administration from the University of North Carolina at Chapel Hill's Kenan-Flagler Business School.

Adam Browne S.E, P.E Chief Engineering Officer

As the CSEO, Mr. Browne is responsible for ConXtech's standardized calculations and design methodologies. He also provides technical recommendations and guidance to outside engineering firms working with the ConX System.

Mr. Browne is a licensed California structural engineer with over 20 years of experience. He has a bachelor's degree in mathematics from the University of California at Santa Cruz and studied structural engineering at San Francisco State University before joining the firm BFL/ OWEN in 1994. Before joining ConXtech in 2012, Mr. Browne was the EOR at FBA and Associates, responsible for the structural design on the first 2 million square feet of ConX structure. There, he was integral in establishing acceptability of the framing system with various building departments and jurisdictions.



Kevin Chambers
Vice President of Industrial
Operations

As Vice President of Industrial Operations, Kevin is responsible for growing and executing work in the Process Industry, larger commercial markets such as data centers, and responsible for work with our international clients. Before coming to ConXtech, Kevin worked as a consultant in Project Management for a private company in Houston. Prior to that he spent ten years executing projects in the process industry that ranged in costs of \$50MM to \$3B. His responsibilities ranged from business development to engineering and design to project management.

Kevin received his Bachelor's Degree in Civil Engineering from Texas Tech University and has worked in several different markets prior to attending college. In his youth, he worked as a laborer and welder for companies like Fluor and smaller commercial companies.

CONXTECH

Thank you.

For more information, please contact:

Adam Kurtenbach VP of Business Development (206) 379-4392 akurtenbach@conxtech.com

Josh DeLehman
Director of Business Development
(949) 572-8345
jdelehman@conxtech.com

Tony Pydych
Director of Business Development
Pacific Northwest USA
(425) 221-3243
tpydych@ConXtech.com

Jeremy Michels
Business Development Manager
214.766.6604
jmichels@conxtech.com

Conxtech Headquarters 6600 Koll Center Parkway, Suite 210 Pleasanton, CA 94566 T (510) 264-9111 F (510) 264-1181 CA Contractor's License NO. 855525

